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Abstract
The purpose of this article is to summarize the role of gamma probes in intraoperative tumor
detection in patients with colorectal cancer (CRC), as well as provide basic information about the
physical and practical characteristics of the gamma probes, and the radiopharmaceuticals used in
gamma probe tumor detection. In a significant portion of these studies, radiolabeled monoclonal
antibodies (Mabs), particularly 125I labeled B72.3 Mab that binds to the TAG-72 antigen, have been
used to target tumor. Studies have reported that intraoperative gamma probe
radioimmunodetection helps surgeons to localize primary tumor, clearly delineate its resection
margins and provide immediate intraoperative staging. Studies also have emphasized the value of
intraoperative gamma probe radioimmunodetection in defining the extent of tumor recurrence and
finding sub-clinical occult tumors which would assure the surgeons that they have completely
removed the tumor burden. However, intraoperative gamma probe radioimmunodetection has not
been widely adapted among surgeons because of some constraints associated with this technique.
The main difficulty with this technique is the long period of waiting time between Mab injection and
surgery. The technique is also laborious and costly. In recent years, Fluorine-18-2-fluoro-2-deoxy-
D-glucose (18F-FDG) use in gamma probe tumor detection surgery has renewed interest among
surgeons. Preliminary studies during surgery have demonstrated that use of FDG in gamma probe
tumor detection during surgery is feasible and useful.

History of gamma probe development
In 1942, Marinelli and Goldschmidt used a hand-held
Geiger-Muller (GM) tube to compare uptake of phospho-
rus-32 sodium phosphate in various skin disorders [1],
and later Low-Beer and co-workers used the same technol-
ogy pre-operatively to differentiate benign from malig-
nant breast lesions [2]. The first intra-operative use of a
probe was in patients with brain tumors [3]. Because of
the low sensitivity of GM tubes to gamma rays, scintilla-
tion probes were developed. Harris et al. reported the use
of a thallium-activated cesium iodide scintillation detec-

tor and Iodine-131 (131I) in patients with thyroid carci-
noma undergoing neck exploration [4]. Semiconductor
probes became available in the 1970s. Since then a variety
of surgical probes have been developed.

There are various surgical probes which can detect X rays,
gamma rays (gamma probe) and beta radiation (beta
probe). In this review article we will focus on gamma
probes. The important performance parameters of a
gamma probe includes overall sensitivity (detection effi-
ciency), energy resolution, and spatial resolution [5-7].
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Sensitivity is the detected count rate per unit activity.
Energy resolution is the ability of the detector to discrim-
inate between radiation with different energies. Energy
discrimination is important in separation of primary pho-
tons from the scattered photons. It is also important when
gamma probe detection is performed with more than one
radionuclide having different energies. Spatial resolution
is the ability of the detector to determine accurately the
location of a source and separate two sources which are
close to each other. We will focus this discussion on two
types of gamma probes in this article; scintillation-detec-
tor and semiconductor ionization detector probes. A scin-
tillation probe consists of a scintillation crystal, a light
guide, a photomultiplier tube and associated electronics.
Visible light is produced when emitted radiation is
absorbed by a stopping medium (a scintillator crytstal),
followed by conversion to an electrical pulse. The most
commonly used scintillation crystal is thallium-activated
sodium iodide (NaI(Tl). There are also thallium-activated
cesium iodide (CsI:Tl), and samarium-activated lutecium
ortho-oxysilicate (LSO), and bismuth germanate
(Bi4Ge3O12 or commonly known as BGO) crystals. A sem-
iconductor ionization detector consists of a semiconduc-
tor crystal, a preamplifier and its associated electronics. In
semiconductor ionization detectors, free electrons are
produced as radiation ionizes the stopping medium (a
semiconductor crystal), and the produced electrons are
collected as an electrical pulse. The most commonly used
semiconducror crystal is cadmium telluride (CdTe). There
are also cadmium zinc telluride (CdZnTe), and mercuric
iodide (HgI2) crystals. Both scintillation and semocinduc-
tor probes have distinct relative advantages and disadvan-
tages. Generally, scintillation detector probes have higher
sensitivity, particularly for medium to high energy pho-
tons and semiconductor probes have better energy resolu-
tion and scatter rejection but lower sensitivity, particularly
for medium to high energy photons [5,7-9].

The type of the surgical procedure is important in the
selection of the most appropriate probe. While excellent
spatial resolution (≤ 1 cm) is desired to precisely locate a
small lymph node in sentinel node studies, in tumor
detection surgeries a probe with high sensitivity will facil-
itate searching larger areas efficiently [7]. The nuclear
characteristics of the radionuclide to be used in gamma
probe surgery, emitted photon energy and half-life, are
important in the selection of the appropriate probe. While
Technetium-99 m (99mTc) labeled agents are mainly used
in sentinel node detection surgeries, a wide variety of radi-
onuclides are available for tumor detection surgeries. Side
and back shielding of the probe is important where there
are high activity sources, such as the injection site, being
close to the target area. Thicker shielding, which increases
the weight of the probe, is required when higher-energy
radiation emitting radionuclides are used. Collimation of

the detector provides better spatial resolution but it
decreases sensitivity by reducing the effective receiving
area of the detector and increasing the minimal distance
between the detector and target area [7]. Surgeons prefer
to use thin and lightweight probes. However, low weight
limits the degree of shielding and collimation. Detector
size in current surgical probes, ranges from approximately
5 mm to 32 mm. Smaller detector probes have higher spa-
tial resolution but lower sensitivity than the large detector
probes. The shape of the gamma probe is also important
in the type of surgery and location of surgical area. A nar-
row and angled/bent tip gamma probe is more suitable
for many studies, mainly sentinel node studies. Wireless
(Bluetooth technology) probes eliminates cumbersome
cables that can compromise the surgical field and pro-
vides the surgeon with operative field flexibility.

An easily operated control unit with clear visual display
and a good quality audio signal facilitiates the surgeon's
intraoperative work. Recently, flexible imaging probes or
portable mini cameras with several centimeters of detector
size have been developed for the detection of gamma rays
and beta particles in sentinel node and tumor detection
surgeries [10-12]. A detector probe is fragile and can be
damaged easily if not properly used. The proper care of
the surgical probe to protect it from damage, routine qual-
ity control, sterilization and electrical safety issues should
be rigorously followed.

A list of commercially available probes in the US with
their technical specifications is shown in additional file 1.
A basic gamma probe system is shown in figure 1.

Radiopharmaceuticals used in gamma probe 
tumor detection surgeries
In a significant portion of the reported gamma probe
tumor detection surgeries, radiolabeled Monoclonal Anti-
bodies (Mabs) have been used to localize tumor [13-16].
To a lesser extent, Indium-111 (111In) Pentetreotide for
neuroendocrine tumors and 99mTc-99m Sestamibi for par-
athyroid adenomas and breast cancer have been studied
[17-22]. In recent years, Fluorine-18-2-fluoro-2-deoxy-D-
glucose (18F- FDG) has been evaluated for the detection of
various cancers via gamma probe [23-26].

Radiolabeled Monoclonal Antibodies (Mabs)
Various Mabs have been investigated in intraoperative
gamma probe radioimmunodetection studies. Among
these, anti- tumor-associated glycoprotein-72 (TAG-72)
Mabs (B72.3 and CC49) and anti-carcinoembryonic anti-
gen (CEA) Mabs (COL-1, A5B7, and IMMU-4) have been
the most commonly used. TAG-72 is a high-molecular-
weight (MW > 106) glycoprotein with characteristics of
mucin [27]. It is over-expressed in a wide range of epithe-
lial-derived cancers including colorectal cancer (CRC),
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breast, gastric, pancreatic, ovarian, and non-small cell
lung cancers [27,28]. Increased concentrations have been
demonstrated in more than 90% of colorectal, gastric and
ovarian carcinomas and approximately 70% of breast can-
cers [29-32]. TAG-72 is expressed in certain human fetal
tissues including fetal intestine but rarely expressed in
normal human adult tissues and benign diseases [33].
B72.3, the first-generation murine IgG1 anti-TAG-72 Mab,
was shown to be reactive with a wide range of human car-
cinomas including 94% of CRC, 84% of invasive ductal
mammary, 100% of common epithelial ovarian, 96% of
lung carcinomas, as well as the majority of gastric, pancre-
atic, and endometrial carcinomas with only weak or non-
reactivity to a wide range of normal adult tissues with the
exception of secretory endometrium [29,31-35]. CC49 is
a second-generation murine anti-TAG-72 Mab developed
at the National Cancer Institute. Studies have demon-
strated that CC49 has only minimal immune reactivity to
a range of normal tissues but recognized a different
epitope on the TAG-72 antigen and exhibited higher reac-
tivity to a wide range of carcinomas including breast, CRC,
ovarian, and lung carcinomas compared with B72.3
[35,36]. CC49 demonstrated better tumor detection in
patients with CRC [37,38]. Studies indicated that a
number of factors, including its pancarcinoma nature,
made CC49 a desirable antibody for clinical use [36].
CC83, another second-generation murine Mab against
TAG-72, has been shown to have a higher affinity constant
than the anti-TAG Mabs CC49 and B72.3. CC83 was
found to be safe and sensitive in detecting recurrent CRC
[39].

Murine Mabs demonstrate excellent tumor localization
but more than 50% of the patients develope a human

antimouse antibody (HAMA) response. To prevent this
anti-immunoglobulin response, a humanized anti-Tag-72
Mab (HuCC49) was developed [40]. Biodistribution stud-
ies demonstrated equivalent tumor-targeting of HuCC49
and CC49 to human colon carcinoma xenografts [40].
This Mab did not produce a HAMA response in any of the
studied patients [41].

Another potentially good target antigen in intraoperative
gamma probe radioimmunodetection is CEA. It is a cell
surface glycoprotein that is over-expressed in a variety of
human tumors including CRC, gastric, pancreatic, ovar-
ian, breast and non-small cell lung cancers. Sixty-six to
100% of colon cancers express CEA [29]. Numerous Mabs
have been developed by a number of groups to target
CEA. COL-1 Mab was shown to have a high Ka to CEA and
to localize to a large number of colon, breast and non-
small cell lung cancers [42]. Anti-CEA Mab, A5B7, a
murine IgG1, localized in 97.8% of primary and 88.8% of
the principal tumors in second-look procedures in
patients with CRC [43]. Another anti-CEA antibody,
IMMU-4, a murine IgG1, has been used as well [44,45].

Technical issues with Mabs
The desirable characteristics of a Mab include; high affin-
ity and avidity for its antigen, easy and rapid penetration
to the tumor tissue, long tumor residence time, rapid
clearance from the circulation, not accumulating in nor-
mal tissues and not producing a HAMA reaction. The form
of the antibody, whether whole or fragment, will affect its
detection efficiency. Fragments have smaller molecular
weight and faster clearance rate from the blood and faster
and more efficient penetration to the tumors than the
whole antibodies. There is also reduced non-specific anti-
body binding due to loss of the Fc fragment. All these fea-
tures result in low normal tissue background activity and
increased tumor to background ratio and better detection
of tumors. The biodistribution and metabolism of the
antibody fragments is also different compared to whole
antibody. Whole antibody is more likely to be localized
and metabolized in the liver, which compromises efficient
detection of liver tumors. Likewise fragments accumulate
more in the kidneys and may not be useful in the evalua-
tion of the tumors in or around kidneys and bladder.

Mabs are not truely specific for malignant tissue and can
bind to normal tissues and tissues with benign diseases.
Antigenic heterogeneity may limit effective detection of
cancer using monoclonal antibodies. The use of a mono-
clonal antibody mixture (antibody cocktail) can enhance
targeting of tumor sites. There are controvesial results
about possible interfering effect of circulating shed anti-
gens on localization of Mabs in tumor tissue. While some
studies report increase in imaging sensitivity when
increasing the amount of antibody, some authors did not

A basic gamma probe systemFigure 1
A basic gamma probe system. Control unit and probe. 
(Courtesy of Care Wise Medical Products Corp., CA, US).
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find a profound difference [46-55]. In a review of the lit-
erature, Pimm et al reported that circulating antigen can
restrict tumor targeting in human xenografts tumors in
nude mice, but this effect is not seen in patients [53]. Shed
antigens in the lymphatics may cause misdiagnosis of
lymph node metastasis. Most of the Mabs currently used
in clinical studies are of murine origin and when given to
humans cause HAMA. This may cause rapid clearance of
antibody from the circulation before effectively targeting
the tumor and limits the possibility of repeat injections.
This is more likely with whole antibody injection and less
with fragments. It is generally less important in diagnostic
studies compared to radio-immunotherapy, where higher
amounts of Mabs are used. Genetic engineering tech-
niques have been useful in minimizing the possibility of
HAMA by producing recombinant antibodies including
chimeric, humanized or human antibodies.

Studies have also investigated biotinylayed Mabs and the
avidin system as a method to shorten the current long
interval (up to 5 weeks) needed between injection and
surgery [56]. There are many pretargeting protocols. The
most investigated one involves the avidin-biotin system.
Pretargeting is based on the separate administration of
cold Mab and the radiolabeled Mab. In order to reduce
non-specific uptake of radiolabeled antibody, Mab is first
labeled with biotin. The Mab binds to the tumor and non-
specific uptake is cleared by RES. Radiolabeled avidin is
then injected which localizes in the tumor because of high
affinity and specificity of avidin for biotin. A further
method of pre-targeting is the hapten/antibody (bispecific
antibody) system [57].

18F-FDG
18F-FDG is a positron-emitting non-physiologic analog of
glucose. Malignant tumors avidly accumulate FDG
because of the accelerated glucose metabolism and
increased rate of glucose transport and utilization in
malignant cells relative to normal cells. FDG in the blood
is transported into the cells via glucose transporters and
phosphorylated to FDG-6-phosphate by hexokinase. This
is thought to occur more readily in tumors due to overex-
pression of the glucose transporters GLUT1 and GLUT3
and higher levels of hexokinase in malignant cells [58].
Because glucose-6-phosphatase activity is low in most tis-
sues and in tumors, FDG-6-phosphate cannot be dephos-
phorylated to FDG and therefore FDG is trapped in the
cell. More importantly, FDG-6-phosphate cannot be uti-
lized in the Embden-Meyerhoff cycle of glycolysis result-
ing in accumulation of the radioactive tracer. In recent
years, several groups have utilized 18F-FDG for intraoper-
ative gamma probe tumor detection for the detection of
tumors in patients with CRC, lung cancer, melanoma,
breast cancer, and head and neck cancers including thy-
roid [23-26]. Approximately 5 to 10 mCi (185 to 370

MBq) of 18F-FDG is injected intravenously approximately
30 minutes before the gamma probe surgery. In some
cases gamma probe surgery is performed immediately
after PET imaging which is approximately 3 hours after
injection of 15 mCi (555 MBq) of 18F FDG.

99mTc-99m Sestamibi
99mTc-99m Sestamibi is used principally for myocardial
perfusion imaging. It has been shown to accumulate sig-
nificantly in various tumors including breast, lung, par-
athyroid, thyroid, brain and bone. 99mTc-99m Sestamibi is
actively transported into mitochondria by the electron
gradient between plasma and the mitochondrial mem-
brane potential. This radiopharmaceutical has been used
for the detection of parathyroid adenomas by imaging
and for intra-operative gamma probe detection. 99mTc-
99m Sestamibi is also useful to image P-glycoprotein
(Pgp) expression in the tumor cells. Tumors over express-
ing Pgp pump certain chemotherapeutic agents out of the
malignant cells, producing chemoresistance.

Gamma probe surgery can be performed either on the
same day following pre-operative imaging (approxi-
mately 2.5 to 3 hours following intravenous injection of
15 to 25 mCi (555 to 925 MBq) 99mTc-99m Sestamibi) or
in a separate day (approximately 10 min following intra-
venous injection of 1 mCi (37 MBq) 99mTc-99m Sesta-
mibi) [59].

111In-111 Pentetreotide
111In-111 Pentetreotide (111In-111 DTPA-D-Phe) is a pep-
tide that binds to somatostatin receptors, predominantly
somatostatin receptor subtypes sst2 and sst5. This peptide
localizes in neuroendocrine and some non-neuroendo-
crine tumors which contain over-expressed somatostatin
receptors. These tumors include carcinoid tumors, islet
cell tumors, pheochromocytoma, neuroblastoma, para-
ganglionomas, medullary thyroid cancer, meningiomas,
gliomas, and lung carcinoma. Gamma probe surgery is
generally performed 24 to 48 hours after the intravenous
injection of 4 to 6 mCi (148 to 222 MBq) of 111In Pen-
tetreotide.

Issues with radionuclides used in gamma probe tumor 
detection surgeries
Many radionuclides are available for labeling tumor tar-
geting agents. Iodine-125 (125I) is the most commonly
used radionuclide for labeling Mabs. 131I, 111In, 99mTc,
123I, and Thallium-201(201Tl) are among the other radio-
nuclides which have been used for this purpose and more
recently positron emitters have gained interest in gamma
probe tumor detection surgeries.

125I is not a suitable agent for imaging due to its low
gamma energy, high tissue attention and weak penetra-
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tion to the tissues, yet its low energy and high soft tissue
attenuation is an advantage in gamma probe studies. Low
radioactivity concentration in distant organs will improve
tumor detection efficiency of the gamma probe when
used with 125I. When whole Mab is used, the long half-life
of 125I is an advantage because it takes approximately 14
to 21 days to achieve significant tumor localization.

The beta particle emission of 131I contributes significantly
to patient radiation absorbed dose. The high energy pho-
tons increases background counts and complicates the
tumor detection efficiency of the gamma probe. Dehalo-
genation of the Mab results in free iodide which increases
renal activity and compromises its utility for the detection
of tumors in or around the kidneys and urinary bladder
[60].

The chemistry of 111In is similar to that of iron. Following
intravenous administration, approximately 30% of free
111In in blood is bound to plasma proteins, mainly trans-
ferrin. The binding of metals to antibody requires a chela-
tion step to achieve a stable bond. The normal
biodistribution patterns of 111In labeled agents includes
localization in the fixed reticulo-endothelial cells in the
liver, spleen, and bone marrow. This can create difficulty
when the surgeons attempts to localize small lesions in or
near the liver and spleen. However, the technique has
been found to be useful in detecting tumor remote from
these sites.

Intraoperative gamma probe tumor detection in 
CRC
Intraoperative gamma probe tumor detection employs
the use of a preoperative injection of a radiolabeled tumor
targeting agent and intraoperative detection of tumor via
a hand-held gamma probe.

Early experimental work with CEA-producing colon
tumor xenografts in swiss nude mice demonstrated that
the gamma probe is more sensitive than scintillation cam-
era imaging in detecting small tumors and in detecting
tumors with radioactivity levels too low to be imaged
[13]. These investigators also reported the preliminary
clinical use of a gamma probe in a patient with CRC. In 28
patients with CRC, intraoperative gamma probe radioim-
munodetection and 131I labeled anti-CEA antibody injec-
tion improved sensitivity and specificity over whole body
imaging [61]. Subsequent intraoperative gamma probe
radioimmunodetection studies, primarily with 125I
labeled B72.3 Mab, reported that that this method helps
surgeons to localize tumors successfully, precisely deli-
nate tumor margins, define the resectability of the tumor,
and determine the extent of tumor recurrence [14-
16,62,63]. In a group of patients that included colon, gas-
tric, breast and ovarian cancers, intraoperative gamma

probe and radiolabeled B72.3 identified tumors in 71% of
patients [14]. In a multicenter trial, 104 patients with pri-
mary, suspected or known recurrent CRC underwent
intraoperative gamma probe radioimmunodetection after
injection of 125I labeled B73.2 Mab [16]. Intraoperative
gamma probe radioimmunodetection localized tumor in
78% of the patients [16]. The overall sensitivity was 77%,
and the predictive value of a positive detection was 78%.
Intraoperative gamma probe radioimmunodetection and
a second generation anti-tumor-associated glycoprotein
antibody, 125I labeled CC49, successfully localized tumor
in 83% of the 36 patients with primary CRC [64]. A pilot
study with CC83, another second-generation Mab against
TAG-72, provided superior tumor-binding ability and
intaoperative localization rates. It was found to be safe
with a sensitivity and positive predictive value (PPV) of
100% and 69% respectively as compared to traditional
methods that produced 85% sensitivity and 72% PPV
[65].

Other studies have demonstrated the role of intraopera-
tive gamma probe radioimmunodetection in detecting
occult liver and nodal metastases [16,62,63]. Eighty-six
patients underwent exploratory laparatomy with both tra-
ditional surgical exploration and intraoperative gamma
probe radioimmunodetection following injection of 125I
labeled CC49 Mab [66]. Arnold et al. in this study
reported that intraoperative gamma probe detected more
sites of disease compared to traditional surgery in this
study. In 41 patients with primary disease traditional
exploration detected 45 sites, and intraoperative gamma
probe detected 153 sites. In 45 patients with recurrent dis-
ease traditional exploration detected 116 sites and intra-
operative gamma probe detected 184 sites [66].

A series of publications suggested that decisions based on
probe findings changes in patient management result in
improved care. Major abdominal surgery can be avoided
and patients directly proceed to chemotherapy or radio-
therapy and important modifications can be made in the
surgical procedure [15,16,62-64]. In one such, intraoper-
ative gamma probe radioimmunodetection findings
resulted in staging changes in 34% of the patients, new
findings resulted in operative changes in 25% patients,
and 30% of the patients became eligible for adjuvant
chemotherapy [64].

Other studies have demonstrated that some tissues that
were intraoperative gamma probe radioimmunodetection
positive were negative on routine hematoxylin and eosin
(H&E) staining, but demonstrated micrometastasis when
evaluated by more sophisticated immunhistochemistry
[67-69]. Identification of lymph nodes with microscopic
tumor and/or shed antigen by intraoperative gamma
probe radioimmunodetection can be used to reproduci-
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bly identify tumor-reactive lymph node lymphocytes for
use in adoptive immunotherapy programs and in study-
ing the regulation of immune responses in vivo [70,71].

Several studies have suggested that intraoperative gamma
probe radioimmunodetection may improve survival by
providing a method of immediate intraoperative staging
that might lessen recurrences and lead to early institution
of adjuvant therapy [63,72-74]. Eighty-six CRC patients
who entered a intraoperative gamma probe radioimmun-
odetection protocol study with 125I labeled B72.3 Mab
injection were evaluated for survival following second-
look surgical procedures [72]. The median survival was
60+ months for the resectable group, 18 months for the
traditional nonresectable group, and 29 months for the
intraoperative gamma probe radioimmunodetection
nonresectable group. The 2-year survival rates were 95%,
36%, and 57%, respectively, and the 5-year survival rates
were 60%, 0%, and 0% [72].

An intraoperative gamma probe radioimmunodetection
study with biotinylayed cold Mabs and subsequent injec-
tion of radiolabeled avidin localized tumor in 65% of the
patients also allowed the surgeon to identify subclinical
tumors [75]. This system reduced the mean time interval
between antibody injection and surgery to 7 days [75]. In
an unrelated study, B72.3 was found to be more sensitive
for detection of recurrent cancers and biotinylated anti-
CEA Mab FO23C5 to be more effective in patients with
primary tumors [76].

In recent years, 18F-FDG use in gamma probe tumor detec-
tion surgeries has been gaining interest among surgeons.
The main advantage of the intraoperative gamma probe
over that of preoperative FDG-PET imaging is the ability
to have the intraoperative gamma probe in close proxim-
ity to the suspected site of recurrent disease at the time of
surgery.

Intraoperative gamma probe tumor detection with FDG
injection has been shown to correlate well with preopera-
tive FDG-PET findings in patients with CRC [23,77,78].
Intraoperative gamma probe removal of all 18F-FDG pos-
itive tissue ensures surgeons of more complete removal of
the tumor burden as compared to the surgeons traditional
approach of assessing and resecting presumed sites of
tumor. Essner et al. used 18F-FDG and the intraoperative
gamma probe in differentiating normal tissue from tumor
in patients with metastatic CRC or melanoma [78].
Recently, we demonstrated that combined use of preoper-
ative FDG-PET and intraoperative gamma probe is poten-
tially helpful to the surgeon as a roadmap for accurately
locating and determining the extent of tumor recurrence
in patients with CRC. While use of the intraoperative
gamma probe appeared to be more sensitive in detecting

the extent of abdominal and pelvic recurrence, preopera-
tive FDG-PET imaging was more sensitive in detecting
liver metastases [26].

In more recent years, Mabs labeled with PET isotopes have
been studied. Strong et al. recently reported the use of
Iodine-124 (124I) labeled humanized Mabs specific for
CRC (huA33) and renal tumors [79].

Conclusion
Intraoperative gamma probe tumor detection of a radiola-
beled tumor targeting agent is a promising technology.
Intraoperative gamma probe use may enable the surgeon
to accomplish a more complete removal of the tumor bur-
den as compared to the surgeons traditional approach of
assessing and resecting presumed sites of tumor. Further
developments in probe technology and improvement in
tumor targeting techniques are on-going to improve sen-
sitivity of tumor detection and management of patients
with CRC as well as a number of other malignant tumors.
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